
Wendell Piez, “Beyond the “descriptive vs. procedural” distinction”
Markup Languages: Theory & Practice 3.2 (2001): 141–172

Q 2002 by the Massachusetts Institute of Technology

1 Two “canonical” references I consulted ([Goldfarb 1990] and [Sperberg-McQueen 1994]) make the
distinction between “descriptive” and “procedural” approaches. To label the different design strategies
“declarative” and “procedural”, while observing a distinction with a history in computer science, is
evidently problematic in this context, mainly since those terms are so relative. In this paper, as I am
deliberately re�ecting on the distinction as traditionally rationalized, I’ll use the terms “descriptive” and

Commentary and Opinion

Beyond the “descriptive vs.
procedural” distinction
Wendell Piez
Mulberry Technologies, Inc.
17 West Jefferson St.
Suite 207
Rockville MD 20850

EMAIL wapiez@mulberrytech.com

There has come to be a consensus that the “procedural vs. declarative” distinction is useful,

if only as a rough guide, in the design of markup languages. To understand how and why this

is the case, we need to ask questions that are usually left unasked when this principle is

proposed, such as “is it the model (the schema) that we consider to be descriptive, or the

tagged document?” or, more deeply, “why do we validate our markup anyway?”

A number of our fundamental assumptions are not always true. Sometimes a schema

might be more than a “go/no-go gauge”, becoming a diagnostic and investigatory instrument.

Sometimes marked-up documents look backward (as representations of something preex-

isting), not just forward to processing. Sometimes semantic opacity is a feature, not a bug.

In order to understand the power of markup languages, it is helpful to keep in mind that they

are both technologies and a species of rhetoric. New characterizations and categories of

markup languages may help focus our design efforts.

Why are we still talking about the “descriptive/procedural” distinction? The
conception continues to be a focus, because it continues to have explanatory
power. Yet at the same time, it clearly demands quite a bit of re�nement when we
look at the increasingly broad spectrum of different markup languages, and
markup language applications, that are now proliferating. Descriptive? Of what?
Separation of format from content? What’s content, and what’s format? Apart
from its format, to what do we refer to determine what “content” is; how do we
specify it, and how do we go about designing tags for it? What kind of thing are
we trying to model, anyway?

The traditional arguments around the “descriptive/procedural” distinction1

have detailed a number of advantages to descriptive markup languages (also

Wendell Piez142

Markup Languages: Theory & Practice | Vol 3 No 2

“procedural” when referring to the traditional dichotomy, and occasionally loose synonyms such as
“generic” or “presentational” when it serves my purposes (one of which is, of course, to clarify what we
might mean when we use these terms).

Another examination of this issue, tracing out several possible “axes” along which distinctions may
be made (and thereby anticipating the arguments of Allen Renear [Renear 2000] and myself), is Mavis
Cournane’s. See [Cournane 1997].

2 Note that in this context, XSLT is procedural as a markup language (the tag set is closely bound to a set
of processing requirements), while being declarative as a transformation or processing language: it is
procedurally bound to a declarative application. This in itself is an indication of how relative these terms
are.

3 Note here I speci�cally mean the implied semantics of the model, not any behavioral or operational

loosely identi�ed as “generic” languages) over their procedural cousins: scalabil-
ity, reusability of data, and so forth. While these advantages are demonstrably
real, nonetheless the evolution of XML technologies, especially in such applica-
tions of XML as XSLFO, SVG, SMIL, or even XSLT,2 shows that the opposite
approach to designing a markup language also is playing an important role.
Sometimes, it is clear, a procedural language is exactly what we want.

At the Extreme 2000 conference on markup technologies in Montreal, Allen
Renear picked up the task of scrutinizing the opposition, proposing an alternative
framework for which he introduced terms from linguistics and speech-act theory.
I’ll return to Renear’s argument; but in order to get at these issues at a deeper
level, I start by pointing out one begged question, and potential ambiguity, gener-
ally at issue when we assert these categories. When we describe a “markup lan-
guage” (or a “tag set”) as descriptive or prescriptive, are we talking about model
or instance? That is, are we talking about the proposed, implied or asserted
semantics of an abstract model for a document type (classically, as formalized by
a DTD); or are we making generalizations about the tags in use, that is the
(implied or effective) semantics of element and attribute types as instantiated in
documents? It matters which one of these we are describing, not simply because
they may be different (in the ideal case they should perhaps not be), but because
the very fact that the two things (DTD and document) might possibly end up
“meaning” something different in practice, raises questions about the relation
between model and instance. In the real world (not to put too �ne a point on it),
sometimes users “mean” tags in ways not intended by designers, and this fact
bears directly on the problem because it indicates how a model’s “description” of
a document type may not be exactly what a document’s own tags “describe” (or
may be purported to describe, depending on who you talk to).

Now any designer will seek, and will probably assume, that the semantics of
model and instance should be the same, or at least not at cross-purposes. When
they diverge, we call it “tag abuse”, thus begging the question by simply handing
authority for correctness to the designer’s “intent”, whether stated or implied. In
fact, since we generally design models �rst and write instances later, it is a design
goal, necessarily implicit and always assumed, that the model be complete and
well-�tted enough to the problem domain, that its semantics3 can be effectively

Beyond the “descriptive vs. procedural” distinction 143

Spring 2001 | Markup Languages: Theory & Practice

semantics that may be actuated in code. As Robin Cover points out, between DTD and the markup
constructs as implied by the syntax, SGML/XML is a fairly weak format for specifying the latter [Cover
1998]. We are always free, however, through names, relationships, or explicit documentation, to assert
informal “human” semantics: to say, that is, what we think we mean.

re�ected in instances without strain. But it may also be that to engineer a system
in which this ideal may be realized (or nearly realized), we had better come to an
understanding of how the model and the instance relate to each other not just in
theory as an objective, but also in practice, where things always seem to have at
least the potential of falling short, and where nothing is so certain as the human
capacity to introduce uncertainty through creative adaptation. I will suggest that
model and instance need not always relate to each other in the same way; and in
fact that the way requirements dictate they must relate to each other in any given
application of a markup language, has a direct impact on the suitability of differ-
ent strategies available to the designer. Since these strategies are commonly
framed by distinguishing descriptive vs. prescriptive, declarative vs. procedural,
or any of several other oppositions down to “separation of presentation [or for-
mat] from content”, it is ultimately this distinction that we are illuminating.

To ask how model and instance relate to each other is to ask, in a very gen-
eral way, about the process and role of what we usually call validation, that is the
process by which model is applied to instance. (It is not the only such process;
but the nature of validation — and usually, its purpose — is such that it can be
taken to stand in for others.) So the �rst thing we need to consider is what vali-
dation is and why we do it.

Why it matters what “validation” is

What is “validation”? As soon as asked, it turns out that this is very much a
live question. XML and XML-based technologies have lately been serving as an
incubator for all kinds of new approaches to validation. Some seek merely to
recast inherited notions of validation into new forms (presumably more tracta-
ble), some seek to enhance them with capabilities of alternative validation regi-
mens, and some may go in entirely new directions. To say nothing of non-XML
approaches (and I hope we see plenty of innovation on this side as well, insofar
as there are certainly signi�cant features of texts and interesting problems to
which XML does not easily lend itself), in XML we have well-formedness check-
ing, DTD validation, XML Schema, RELAX, TREX, XML-Data Reduced, Sche-
matron, Examplotron, etc. etc.

It is not my concern here to consider these in any detail, or even to distin-
guish between them, except to point out the interesting (and signi�cant) fact that
they do not all take the same thing as their object of examination. Basically,
when we validate, we take an instance (an “XML document”) and a model (the

Wendell Piez144

Markup Languages: Theory & Practice | Vol 3 No 2

“schema” or “speci�cation”), and compare these for purposes of saying whether
the instance conforms to the model, or in what ways it fails to conform. But
some of these approaches work on an XML document as a text entity (a
sequence of alphanumeric characters, some of which constitute data, some of
which constitute markup, as per the XML Recommendation [XML 2000]); while
others operate on some kind of more complex structure, typically a document
object or “infoset” held in memory. An important aspect of this is how the for-
malization in XML of well-formedness gives us a new platform on which to build
and standardize validation techniques. A de�nition of “well-formed” (as distinct
from “valid”) brings with it the capability of doing what could be called a “plain
parse”, rendering a sequence of characters into an abstract information set with-
out otherwise concerning ourselves with the higher-order semantics of elements
and attributes. This is important because we may not know or care about such
higher-order semantics every time we process. And when we do, testing the con-
formity of an XML document to any particular semantic pro�le (however repre-
sented) becomes, properly, just one more kind of processing, albeit of a distinctive
kind (or to a speci�c end). Thus validation, considered in light of its purposes
and often its methods, is actually closer to querying, say, or to transformation,
than it is to parsing as such.

The proliferating approaches to validation also demonstrate that (among
other things) any XML document — whether considered as a stream of charac-
ters or as an abstract information set — potentially exhibits a range of different
features or characteristics which we might be interested in testing:

� Constraints on structure of elements and attributes by type (“a head is permit-
ted inside a chapter, but a chapter is not permitted inside a head”).

� Conformity of data elements (element content or attribute value) to speci�c
lexical or other requirements: data type integrity; “authority control”

� Referential integrity of links and pointers
� etc. etc.

Any or all of these might be considered to be properly within the realm of
validation; and more to the point, the list is as open-ended as we wish it to be.

Validation and work�ow: strict validation
The intention or purpose of validation is to subject a document or data set to

a test, to determine whether it conforms to a given set of external criteria. Valida-
tion may thus be distinguished from processing in general, which may not bother
to conduct any such tests (or which may use other tests). It is precisely because
the range of features and characteristics in which we are interested, and which we
need to be able to constrain, is so open-ended, that testing becomes a useful thing
to do in practice. (If it weren’t, our tools could all be built so as not to need
tests.) Our need to test is simply explained and understood (so much so that it

Beyond the “descriptive vs. procedural” distinction 145

Spring 2001 | Markup Languages: Theory & Practice

4 As it was dubbed at the Crystal Palace Exhibition in London in 1851, where the arms manufacturer Colt
demonstrated interchangeable parts. Needless to say, there is nothing inherently “American” about the
principle (an idea that had been around, in Old and New Worlds, for many decades) or its application.

5 See [Hounshell 1984].

rarely needs to be explicated): if there exists a point in a process where it is less
expensive to discover and correct problems than it is to save the work of testing
and �x at later points, it is pro�table to introduce a test. The ideal work�ow, that
is, is one in which we make any correction or adjustment to the materials being
processed at the point where it is easiest and least expensive, making allowances
for the expense of running tests. This assumes, of course, a work�ow that is suf�-
ciently de�ned to make this possible.

We validate, that is, because we want to know in advance of something
whether our data set conforms to a set of speci�ed requirements. Notice a key
concept we have introduced here: such an operation only makes sense, and only
becomes necessary, in an articulated work�ow. Validation, that is, is a type of
“quality assurance” applied at a particular stage in processing. We need down-
stream processing to be predictable, and wish to engineer away, to whatever
extent we can, any possibility of having to decide how to resolve or render any
given anomaly (however interesting it may be) at a later stage of processing.
Rather, we want to invest energy now in assuring that our data already conforms
to a set of clearly-understood criteria.

In fact, this is nothing more than the application of a simple rule of indus-
trial engineering, here applied to information systems. In effect, we are designing
a process (even if a simple one) — an assembly line. Validation provides us with
what is called a “go/no-go” gauge.

This is not merely an analogy. If we look at the beginnings of mass produc-
tion technologies, we �nd a signi�cant transition occurs in the nineteenth century
with the development of the“American System of Manufacture”.4 What distin-
guished this approach to mass production from previous efforts is that the
ancient principle of division of labor was joined with a new one: making the
component parts of the product to be interchangeable. Division of labor, of
course, has been practiced for many centuries and in a range of societies world-
wide. (Nor is it limited to human culture, being found also in the natural world.)
But by itself, division of labor is not suf�cient to win the economies of scale that
result from modern manufacturing methods. As long as parts were not inter-
changeable, production of any manufactured item had to be done on a piece-by-
piece basis, each piece being unique. Only when the individual components of a
manufactured item were submitted to quality control mechanisms, such as jigs,
gauges, and quality checkpoints, could higher-order economies be realized.5

A “go/no-go” gauge is a device used precisely to provide such a check. The
utility, and ubiquity, of such a device is instantly recognizable to anyone working

Wendell Piez146

Markup Languages: Theory & Practice | Vol 3 No 2

Figure 1 | A go/no-go gauge, with accompanying jig

The gear-shaped device is a wire gauge. Either a length of wire is a speci�ed thickness, or it is
not. Pictured with the wire gauge is a draw plate, used for drawing out wire of different gauges
(thus serving as a jig). The draw plate must necessarily conform to the gauge in its measurements
(and be checked from time to time to be sure it has not worn).

A dtd or formal schema functions as a gauge when we use it to perform strict validation,
as a jig when we use it to con�gure, for example, a structured editing tool.

Thanks to B. Tommie Usdin for lending these examples of the tool-maker’s art.

6 A signi�cant detail about gauges used in machine tooling is that they may be crafted, and must be
maintained, by hand. In effect, the craft shifts from the creator of each individual product, to the industrial
engineer who develops a product line.

with a complex work�ow — especially a process which already involves a com-
plex division of labor or differentiation of roles.6

Although they are no longer physical objects, we test our information sets
against abstract speci�cations for the same reason that in a factory, the machine
tools are set up to mill parts to exact speci�cations, and are frequently tested (the
tools themselves, that is) to reassure conformity. In fact, the markup industry’s
leaders have unerringly, if not always deliberately, been proponents of open stan-
dards for markup technologies for the exact reason (among others) that it is stan-
dards-based interchangeability, when applied to information objects, that
provides us with the coveted advantages for our data of vendor- and application-
independence, of modular architectures and layered systems, commodity tool

Beyond the “descriptive vs. procedural” distinction 147

Spring 2001 | Markup Languages: Theory & Practice

7 This was especially the case in systems like those for which markup applications were �rst developed: a
formatter, for example, running replacement macros over a marked-up text, has to work with a narrow
range of structured inputs; but by its very nature (it must use available resources to process what’s there
and not expend resources on exception handling), it is not coded to analyze abstractly whether a given
data set’s markup conforms to the expected pattern. The advantages of decoupling are here, that limited
processing power can be applied strategically to one job at a time. Decoupling provides similar
advantages when processing is distributed across organizations or along a work�ow or supply chain.

8 Contrasting approaches would be dedicated word processors, which are generally only suited for end-to-
end processing by a single person and not for complex editing systems with demanding layouts; or
virtually any publishing system for print or the web, which (except experimentally) have only served to
automate the very tail end of production.

markets, and long-term data stability. (Not that any of these things become easy
to achieve even on a standards basis: but at least with standard ways of judging
correctness, there is some hope for them.)

Whenever a validation technology is applied this way, I think it appropriate
to call it “strict”: I want to convey that it proceeds by posing a binary choice:
thumbs-up or thumbs-down. Note that this does not indicate anything about
what, precisely, is being validated (structures, data types, referential integrity
etc.), or even how extensively, but rather the manner of and rationale for valida-
tion. The expectation is that if a document instance fails to validate, there is
something wrong with it, and it will be diverted away from the main work�ow in
order to be “�xed”.

Strict validation is very usefully decoupled completely from speci�c applica-
tions. (The measurements of the parts of the gun may be tested apart from the
gun itself.) The effect can be to loosen the bindings between stages of the process
or layers of the system, allowing agents to work more independently. (Gun parts
can be manufactured in one place and assembled in another.) “Can we process
this in our system?” An electronic document, like any other manufactured com-
ponent, must satisfy strict constraints in order to assure predictability down-
stream; but if we can validate apart from the eventual application, the producer
of the document on one side, need not have any knowledge or interest in the
operation to be run on the other. This decoupling creates opportunities for reuse:
the familiar hub-and-spoke architecture of markup-based publishing systems —
with a generic format in the center and different formats for production or inter-
change on the outside — becomes practical. In many cases, validation is therefore
useful (as has not escaped notice) for specifying contracts, as the mechanism for a
gateway (to an authenticated “safety zone”), or as a “seal of approval”.7

While challenging to engineer and document, markup-based information sys-
tems that routinely subject their data sets to such rigorous speci�cation and test-
ing — and especially when built to standard speci�cations, enabling them to take
advantage of commodity tools — have again and again proven to be both scala-
ble, and more �exible over time, than single-layered systems handling media only
in presentational (or application-speci�c) formats.8 The principles underlying this

Wendell Piez148

Markup Languages: Theory & Practice | Vol 3 No 2

9 It may be that this can even serve as an indicator of those kinds of processes that are receptive to
automation. For example, in the case of elementary education, can we de�ne “work�ow, parts
speci�cation, machining and conformance testing” suf�ciently to automate it? Do we want to?

10 See, for example, [Goldfarb 1990]. SGML DTDs provide much more than a model against which an
instance could be validated: by indicating tag omissibility, SGML DTDs (along with their associated SGML
declarations) also give critical information about how lexical information in an instance (or the lack

are exactly those that allow a factory to become more ef�cient and productive
than individual craft workers, once basic problems of work�ow, parts speci�ca-
tion, machining and conformance testing are dealt with.9

Validation regimens are useful (and sometimes necessary) because they
stretch processing along a time frame, making it possible to encapsulate tasks,
divide labor into roles, and systematize and routinize processing. In an automated
system in which a document may take many forms in its passage — from
authored drafts to editorial cuts to assembly to formatting and presentation for
many media, through a range of various post-publication transformations includ-
ing indexing and aggregation, only after many changes to end in the morgue or
archive, or perhaps never ending at all but persisting as part of the cultural cur-
rency, like Shakespeare’s plays or Lincoln’s Gettysburg Address — dependable
processing could simply not happen without validation. Albeit informally and
manually, it happens in paper-only information systems all the time. Appropriate
validation is exactly the practice that makes it possible not to be applying human
intelligence repeatedly to mindless processing tasks, or to resolving (inef�cient)
decision-making tangles. Large complex systems learn this the hard way, even
when they have lots of cycles to burn. Validation allows human intelligence to
work better because it only has to concern itself with one set of standards at a
time, not with all standards, for all conceivable uses or needs, at every point in
the process.

Finally, by supporting interchangeability, external means of validation pro-
vide a foundation for an entire economy or even (at the grandiose extreme) for
“information ecologies”, because they introduce network effects among applica-
tions. So we see that XML applications, unlike older applications based on pro-
prietary formats, work not to compete with each other, but rather to complement
one another, since each can work in different ways to support a common data
set. Accordingly, the usefulness and value of the entire information system (and
thus of each application within it) goes up exponentially with the addition of
each new application. This is exactly what happened when, for example, gauges
of wire or threads of screws were standardized; and it is what is happening today
with data encoding technologies.

This is the compelling and overarching bene�t to standards-based validation,
and it has been provided as a rationale for the deployment of DTDs (document
models) in markup systems since their inception.10 But it is not the only conceiva-
ble way of applying, or reason to apply, validation techniques to encoded data.

Beyond the “descriptive vs. procedural” distinction 149

Spring 2001 | Markup Languages: Theory & Practice

thereof) is to be interpreted. This, however, can be taken to be secondary, as such lexical optimizations
are only possible given a deterministic element structure. By disallowing tag minimization, XML reduces
the role of the DTD almost to its core, to provide a gauge or pattern for testing the element structure of an
instance against a set of external constraints.

11 In XML terms, “validation” is necessarily strict, and with respect to a single given DTD (named in the
DOCTYPE declaration). In XML terms, “loose validation” is a contradiction in terms, and it might be
better if one were to speak of querying, structural pattern-matching, etc.

Likewise, just as in XML terms “valid” is itself a binary condition, it may be useful to consider
“strict” an absolute in this respect, so that one would not say, for example, that one querying or type-
checking regimen is “stricter” than another. Rather, strict would by de�nition mean “either acceptable or
not”; whereas loose would be any routine in which a question may be raised whether the document
should be rejected or “corrected”, or some alternative course taken.

Validation as discovery: loose validation
The usefulness of a validation regimen in framing a clearly-de�ned work�ow

makes an extremely compelling case for it. But a gauge that can be used to judge
a piece of work as pass or fail, can often be used as easily as a measuring device.
The same techniques (parsing or querying an instance, comparing the instance to
a model) can be used in a more �exible kind of application. Preceding the opera-
tion of judging, is the operation of observing. What can we see about this data?
Where does it fail to conform to a given pattern? Validation is essentially ana-
lytic: data may or may not satisfy given constraints; but our exception-handling
may be permissive. In contrast to the use case described above, I call this kind of
validation “loose”. Note that it is the means of application that is loose or strict,
not the routine in itself (whether it be referring a document to a DTD, an XML
Schema or what have you11) — although typically, it may be expected that the
type of processing in a loose routine may be less comprehensive, but possibly
more narrowly focused, than a strict routine, and so, accordingly, that some tools
will be better suited for the work than others. Such suitability stems not from any
fundamental differences in technology or methods, but rather from the relative
adaptability of different tool sets to the different requirements we seek to address
with them.

In other words, we are not using a validation mechanism — a DTD, a
Schema, a specialized processor — as a simple gauge. It may be more like a cali-
per or a scale, a measuring or reporting instrument.

It is possible to envision, in sophisticated systems, looser routines combined
with stricter tests. Validation routines may even be connected in series or staged
from looser to stricter. But in its purest form, we might expect “loose validation”
to be most useful in an altogether different setting.

In a paper delivered to the 1998 Markup Technologies conference, David
Birnbaum sketched out such a scenario [Birnbaum 1998]. Birnbaum describes an
application in which an historical edition of a dictionary is being encoded in
SGML, posing a dilemma for the encoder when the dictionary violates its own
structural conventions. Does the encoder intervene editorially, changing the text

Wendell Piez150

Markup Languages: Theory & Practice | Vol 3 No 2

Figure 2 | Brown and Sharpe 599-100 0-1.2" Digital Micrometer

This model is available with an RS-232 port. High-resolution image provided, with permission,
by Brown and Sharpe, Inc., of North Kingstown, RI (http://www.brownandsharpe.com).

12 Birnbaum also explores the issue in an earlier paper, arriving eventually at a moderate position: “I do not
advocate, of course, that we prepare and publish invalid SGML, or that SGML processing software be
enhanced to react af�rmatively not only to valid SGML events, but also to SGML errors. But I would
suggest that when we perform document analysis on existing texts, we recognize that some oddities may
at least logically (although perhaps not practically) be represented not as document structure, but as
violations of document structure.” See [Birnbaum 1997].

to �t the normal model? This would be unacceptable for a project given to repre-
senting the record, not changing it. Does he relax the constraints of the DTD?
Then he loses the capability of modeling properly the majority of the dictionary
entries, which are structurally conventional. Does he model the exceptions in a
parallel structure? This is possibly a workable compromise, but is less than ideal
inasmuch as it is precisely that the anomalous entries are structurally exceptional,
that the encoder wishes to trace. “We are not conditioned to think of syntacti-
cally invalid SGML as a natural or desirable state, or as a practical or appropri-
ate way of representing syntactically contradictory source data”, remarks
Birnbaum. He concludes that markup-based systems could be far more amenable
to the special requirements of scholars working on legacy texts, if they had some
capability to handle structurally invalid markup, at least in some kind of transi-
tional mode.12

How should we call this approach to markup? The primary goal of markup
in such an application is apparently to describe a pre-existing object. In the
extreme case, the objectives of future processing (or, more narrowly, of certain
kinds of future processing) might be postponed; at any rate, the purpose of the

Beyond the “descriptive vs. procedural” distinction 151

Spring 2001 | Markup Languages: Theory & Practice

13 “Mimetic” in that it aims to “imitate” its source, and “exploratory” in that its design is adaptable. The
term “exploratory” was suggested to me by Geoffrey Rockwell, of McMaster University, who attributes it to
John Bradley (of King’s College, London): “One of the things that struck me about COCOA and XML is that
in certain situations you don’t know what the �nal hierarchy will be. In the early stages of markup of
something for study ... you need something �exible and simple like the COCOA tags. At the end you
should know enough to reencode descriptively. . . . I think John Bradley has called it exploratory coding.
The problem with COCOA is that it doesn’t let you make the transition from exploratory to descriptive
easily. Ideally one wants something where you can, once you are sure something is �xed, replace it with a
robust scheme” [Rockwell 2001]. The encoding syntax COCOA is a very �exible, non-hierarchical (stream-
based), event- or milestone-driven markup scheme, interpretable by several early open-format text analysis
packages.

14 Nor is there any reason why this couldn’t be done with XML ... such a project would reverse the usual
order (design and DTD development �rst, then mark up the texts), and concentrate on transcribing an
analysis of text in the process of analyzing it, then working over the markup to recognize patterns and
locate points of interest. Any models would only emerge later. Having introduced the notion of well-
formedness, XML should be very well suited for this.

markup is to identify and trace those features of the text as object, that are inter-
esting and important to the encoder. We might like to call this kind of markup
“descriptive” — but since that term has already been appropriated for an entire
species of markup applications that do not take such a radical position, I propose
the terms mimetic and exploratory to distinguish it.13

Now, it should be admitted that in its pure form, exploratory descriptive tag-
ging would be somewhat paradoxical, since the effort is clearly given to tracing
textual features precisely so that patterns, as well as anomalies, can be recognized
and exploited — in principle, recognized and exploited by automated processors
(or we would be using a pencil to do the work). Even if the primary goal is to
describe something pre-existing — if need be, to develop a language capable of
such description — it remains the case that the goal of this activity may be to
make automated processing over this description possible. Or is the latter goal
the subordinate one; do we want to automate our processing only in the interests
of a more exact and complete description? An answer to this question is very
rarely stated explicitly. The potential stress between these objectives is something
we will come back to.

Still, the idea of approaching a text and doing a direct, ground-up develop-
ment of a set of markup conventions, without any great concern either for pro-
cessing or for standards, has its appeal.14 So, for example, it is not dif�cult to
imagine how a scholar might go about creating a marked-up version of a literary
anthology — only to change the markup and adapt it frequently, so frequently
that it becomes impractical to track innovations in markup with a formal model.
Different poems would have different features marked up. There might be style-
sheets and processors that work on the material, but no explicit model that con-
strains the entire thing. The markup would be more in the way of a running
commentary and apparatus, than it would be a single system bound to processing
in a particular way.

Wendell Piez152

Markup Languages: Theory & Practice | Vol 3 No 2

15 A �ne example of a project of this kind is Willard McCarty’s Analytic Onomasticon to Ovid’s
Metamorphoses [McCarty 1999]. The design of the (non-XML) markup is unique and especially suited to
the indexing and tracing of interconnections that McCarty has developed for this poem. In the end, the
markup will validate to its own kind of model (its own set of gauges). But this is a case where exploratory
markup has grown directly into something more “procedural” (or at least application-bound) .

In contrast to more familiar kinds of markup, it is worth noting two particu-
lar aspects of exploratory, mimetic tagging. First, in this kind of work, the tag-
ging comes �rst, the modeling later — if there is a model at all, it is subordinate
to the tagging in the instance: it merely describes it, never dictates to it, and is not
deployed as a way of introducing constraints, except provisionally. Second, in this
type of tagging, there is no question as to what the markup describes (instance or
model): it is always the instance. The model does not exist a priori, but rather
only as a (second-order) description.

Interestingly, such a strategy seems to have been part of the original inten-
tion, at least among some of its developers, for TEI tagging:

A balance must be struck between the convenience of following simple rules
and the complexity of handling real texts. This is particularly the case when
the rules being de�ned relate to texts which already exist: the designer may
have only the haziest of notions as to an ancient text’s original purpose or
meaning and hence �nd it very dif�cult to specify consistent rules about its
structure. On the other hand, where a new text is being prepared to an exact
speci�cation, for example for entry into a textual database of some kind, the
more precisely stated the rules, the better they can be enforced. Even in the
case where an existing text is being marked up, it may be bene�cial to de�ne a
restrictive set of rules relating to one particular view or hypothesis about the
text — if only as a means of testing the usefulness of that view or hypothesis.
[Sperberg-McQueen 1994]

Note that in this view, validation is a means not only of testing a text, but also of
testing the model that (provisionally) purports to describe that text.

After everything, exploratory markup will be dif�cult to justify for most
applications, especially over the long term. Since it does not rely on or stress
methods of strict validation, it does not share in the virtues of scalability. Like-
wise, it is dif�cult to envision how it could be conducted except by practitioners
who are expert both in markup technologies, and in the specialized subject mat-
ter they are treating. As an instrument of analysis and representation of a literary
text, however, this kind of technology would have great potential.15 And it is not
only the literary scholar who might be interested in this avenue of approach,
using document markup in a new way. It could prove to be a useful methodology
in psychology, sociology, economics — any study with a complex and manifold
data set — and a source of hitherto-unthought-of ontologies and modeling tech-
niques.

Beyond the “descriptive vs. procedural” distinction 153

Spring 2001 | Markup Languages: Theory & Practice

16 Again, I do not think this is accidental. Ever since Gutenberg, the automatability of print has been
regarded as one of its most important features. Print applications in particular — everything from
newspapers to academic journals to catalogs of every kind — have always been at the forefront of
automated production systems precisely because the codex has been a successful technology, answering
to people’s wishes for granular access to information. As technologies of production have evolved, so has
the codex form itself — with its headers and subheads, footnotes, indexes etc. — into elaborations that
require formal consistency to function. Thus, not just the technical, but the conceptual groundwork for
markup-based systems was laid by the evolution of print media.

Mapping the territory

Apparently there are two kinds of descriptive markup: the classical form
(what I will identify as “generic” markup) which works descriptively but which is
aimed at future processing, and what may be called an “exploratory” approach
to markup. In practice, the difference between these is primarily that exploratory
markup will not rely especially on strict validation, in particular when the
requirements of a strict validation regimen may interfere with the markup
designer’s capabilities to introduce new terms to re�ne or extend an accounting,
treatment or handling of the text. A more conventional generic language, how-
ever, validates strictly, thereby allowing more-or-less dependable bindings to
downstream processing. As we turn back to the classic “descriptive vs. proce-
dural” dichotomy, it may be helpful to keep this possibility in mind.

Descriptive markup and validation
Whatever the explanation, it is evident that “descriptive languages” work

(meaning, this time, generic languages but not their exploratory cousins). It is
possible, and at times highly practical, to have a formally-de�ned document type
that provides considerable advantages for processing — because it admits of strict
validation — and yet, that works by describing an abstract model rather than by
committing a data set to one or another kind of processing format. In other
words, although there is an inherent stress between, on the one hand, require-
ments for, or intentions or biases towards the kind of consistency enforced by
strict validation (a consistency that lends a data set to future processing), and on
the other, to the backwards-looking interests and tendencies of text description —
although these purposes are sometimes at odds, nonetheless they are not so mutu-
ally incompatible that a workable compromise, taking advantage of the capabili-
ties of either, is not possible between them.16

Generic markup languages occupy exactly this middle ground between being
bound to a certain kind of processing (the “procedural” side), and very loose lan-
guages (maybe they are merely markup conventions or practices), that have great
freedom to trace their subjects, but that may be hard to deploy or scale up in
production — the truly “exploratory” descriptive languages.

Consider Figure 3. In this diagram the exact placement of one or another
language might be disputed. At this point, the placement really matters only

Wendell Piez154

Markup Languages: Theory & Practice | Vol 3 No 2

Figure 3 | Markup Languages mapped with respect to validation and description

Strict validation is only possible with a speci�ed set of constraints, so it is at odds with any
application of markup that must describe the data with “higher �delity” than those constraints
allow. Yet an in-between zone exists, where formal models provide for strict validation, but are
“descriptive” (and so, application-neutral) enough to support a range of different kinds of pro-
cessing.

17 A procedural language could in fact target more than one application. XSLFO, in fact, verges on this by
targeting on-screen display, print, and audio output.

along the horizontal axis. (Languages are also distributed vertically, both for legi-
bility and in anticipation of my argument to come.) On the left is a �ctional lan-
guage, “Prof ML”, which (we can stipulate) is a set of markup conventions that
could be used in an exploratory way. Procedural languages such as XSLFO and
SVG are far to the right, indicating not only that their binding to processing is
strong (they are expected to be processed one way at least, if not others17), but
also that if we wish to validate them apart from processing, DTD or even XML
Schema validation may not, by themselves, be suf�cient. (Both XSLFO and SVG
imply, in effect, through their constraints on attribute values, notions of “data
types” that are stipulated over and above the constraints on element structure.
Whenever an attribute value is expected to resolve, for example, as CSS, XPath
or SVG path syntax — all of these amounting to distinct syntaxes apart from the
grammar of the document as XML instance — we will need more than a DTD to
validate.)

Beyond the “descriptive vs. procedural” distinction 155

Spring 2001 | Markup Languages: Theory & Practice

18 The Greek word at the root of “theory” has a sense of seeing, beholding, with an implication that there is
some object there to be seen. Once we have a DTD, we actually have such an object. Of course, it can be
argued whether a reader or interpreter ever encodes anything but a theory of a text; nevertheless, it
should be evident how the necessity of modeling in a certain way, would in�uence the direction of what
(and how) the text is theorized to be.

19 Here my argument has been anticipated by Liam Quin. See [Quin 1996].

20 Robin Cover ([Cover 1998] and [Cover 2001]) assesses SGML DTDs as lacking in semantic transparency,
therefore inadequate for many modeling functions. But (as I will argue further below) the DTD’s semantic
opacity in this sense, is actually of bene�t for certain kinds of systems.

21 See, for example, Ian Lanchashire’s comments in [Lancashire 1995]. At that (relatively early) time,
Lancashire’s critiques addressed perceived shortcomings in both SGML and TEI, without always being
clear which is which. But many or most of his arguments would have been neutralized if TEI tagging could
be something closer to exploratory (which, given the role of the DTD in SGML systems, it could not have
been).

This diagram also dramatizes how, when strict validation regimens are intro-
duced, there is also necessarily a shift in emphasis for design. On the left side,
models are probably informal and implicit in the documents (since if we are not
validating, any model must be provisional); whereas as we move to the right,
models will become formal and explicit (in the form, say, of a DTD or XML
Schema); so a generic descriptive language that validates, ends up describing not
the text “as in itself it really is”, but a theory about, a model of, the text.18 To set
out to describe “the text itself” runs the risk, at least, that in the long term vali-
dation will fail on us, as the model fails to “�ex” to the ever-open possibilities for
new description.

There will always be a tension, in some ways irreconcilable, between the
impulse to �t and form a text, or a markup language, to the peculiar circum-
stances and opportunities of the moment, and the attraction, and pro�t, of sub-
mitting ourselves to a regimen good for all time. How to position our design
between these poles, is what we are determining when we try to “tune”, as it
were, the level of abstraction of a markup language: we are determining to what
degree and in what respects it will be �exible, in what respects speci�c.19 But
regardless of whether the underlying rationale is a �ction or not (the notion that
there is one regimen of tagging that is good for all time — for some more nar-
rowly scoped tasks, it may not be a �ction at all), there is a kind of genius in
exactly that rough level of validation achieved by SGML DTDs (of which the
XML DTD is, for these purposes, a more re�ned form). Enough structure is there
to support work�ow-based go/no-go tests; yet the models are semantically
opaque enough20 to work generically. This allows SGML- or XML-based systems
to occupy a middle zone, validating up to a useful point, but also having enough
�exibility to work, albeit fairly roughly (only one hierarchy, etc.), “descriptively”
— at least when the tag set is well designed. That it is not truly exploratory is
something that has occasionally been pointed out as one of SGML’s weaknesses.21

But any number of successful medium- and large-scale systems are demonstration
enough that a middle ground is possible — and a rewarding place to build.

Wendell Piez156

Markup Languages: Theory & Practice | Vol 3 No 2

Figure 4 | Renear’s Map

Allen Renear’s speech-act linguistic analysis of markup languages. See [Renear 2000].

22 Recollecting Robin Cover’s argument about the semantic capabilities (or rather, the lack thereof) of
SGML/XML ([Cover 1998]; see also [Cover 2001], it may be that we have here a case of the tail wagging

Adding another dimension
When Allen Renear examined these questions [Renear 2000], he came up

with an analysis of the problem with several points of contact with mine. The gist
of Renear’s argument can also be presented as a diagram.

Note that Renear was not concerned to examine the role of validation in
these systems, so his horizontal axis maps only roughly to mine, distinguishing
only between different “domains” which a markup language might address. But I
think it is not unfair to relate a discrimination between logical and renditional
domains, to a distinction between the kinds of constraints each domain may be
expected to introduce, and the conditions of their introduction — even apart
from the semantics those constraints imply. Whereas a renditional domain must,
in the end, “validate” in its application (either the stuff formats properly, or it
does not) — and whereas it is likely that in order to do so, some markup seman-
tics may need to be observed that are outside the scope of DTD-based structural
validation (so that a DTD-based validation regimen would need to be supple-
mented to be complete) — the “logical” domain, on the other hand (especially as
it concerns what Renear describes as “content objects”) might well be de�ned in
such a way that a DTD is suf�cient to describe it.22

Beyond the “descriptive vs. procedural” distinction 157

Spring 2001 | Markup Languages: Theory & Practice

the dog: if the semantic expressiveness of DTDs were richer, the “logical” domain could be accordingly
more fully-featured. Models would be more directly tied to processing semantics — and we would not have
had the same chance to learn the capabilities and occasional advantages of the looser coupling between
model and application that the logical domain implies.

23 Although imperative and performative moods are supposed to be distinct in the scheme Renear proposes,
in his treatment he is not quite able to clarify why the mood of a “renditional imperative” and a “logical
performative” (a bit of markup that makes something a title, say, by so labeling it) should be considered
to be different. I submit that the difference is one of agency. An imperative is spoken by one agent, to be
performed by another, whereas a performative is something that is done in the speaking of it. But, when
applied to markup languages, this in turn raises other questions: is such agency a property of the
language itself, or is it determined by the design of the architecture in which it functions? In linguistic
terms, the “pragmatics” of the situation are entirely different.

What my analysis adds is the suggestion that to bind a tag set to a particular
kind of processing (whether it be in the “renditional” domain or not) implies
both strict validation, and a range of other considerations and constraints such as
data typing or referential integrity between elements (which may require more
fully-featured validation mechanisms than DTDs alone); whereas to work in the
“logical” domain puts us in a relatively free in-between zone, where validation
provides us the bene�ts of predictability, control, and a model-centered design,
but where the semantics of the markup itself does not rise to the level of specify-
ing behaviors (without the kinds of mapping or augmentation that are provided
by stylesheets) — thereby leaving it to be “clean”, “logical” and “generic”.

But Renear’s strongest contribution is in adding a dimension we have not
really attended to. By discriminating on a second axis (I have made it vertical)
between “indicative” and “imperative” (or “performative”), Renear isolates a
very useful axis that had gone pretty much unnoticed. (I believe his basic proposi-
tion, that the descriptive/procedural distinction has served to mask this dimen-
sion, to be essentially correct.) In my diagram we might notice, for example, that
notwithstanding the apparent advantages of generic markup, it is still evident
that there is a clear difference even between (say) the W3C Rec document type
(the DTD by which W3C drafts and recommendations are marked up), and (say)
TEI markup. In a sense both may be considered to be descriptive: but it still
seems signi�cant that one presumes to describe something that already exists (TEI
documents usually purport to be faithful representations of texts already extant
in print or manuscript), whereas another (W3C Rec) describes something that
never exists apart from its tagging (or in products derivative of that tagging), to
be created and then maintained in that form.

While Renear himself is not altogether satis�ed with the categories he pro-
poses,23 it is evident that either or both “imperative” and “performative” can
provide the necessary distinction from the opposite term, “indicative”.

To reduce this to its essence, it appears markup can look “into the text”, or
“out to the application” (this would seem to be a very loose way of characteriz-
ing our old friend, the descriptive/procedural distinction); but it can also look for-
ward in time, to eventual processing, or it can serve, irrespective of application,

Wendell Piez158

Markup Languages: Theory & Practice | Vol 3 No 2

24 I actually think there is an important role to be played by such little languages, exploring not artifacts or
texts, so much as processing opportunities.

to represent some state that pre-exists, for example in a document already extant.
While it might be tempting to call the latter kind of markup “descriptive”, this
requirement is in fact orthogonal to the requirement for application binding we
have been examining so far. Renear’s major contribution, by identifying a kind of
markup in the logical domain, but the imperative or performative mood, is to
show that descriptive markup (in the traditional sense of the term) can in fact
look either back, or forward. In fact, many or most of the current initiatives in
XML languages are of exactly this forward-looking type. The markup serves
descriptively, but only to describe the text’s content with respect to a logical
model, designed to be amenable to some particular kind (or some range) of pro-
cessing. This is quite a different thing from using markup to describe some extant
artifact in the world. A confusion over the stresses between the two views is at
the heart of many design problems and infelicities.

We can adopt this point of view in developing our map of markup lan-
guages: one way to name this new axis is between “prospective” and “retrospec-
tive” markup languages. A retrospective markup language is one that seeks to
represent something already existing; whereas a prospective markup language is
one that seeks to identify a document’s constituent parts as a preliminary to fur-
ther processing. Prospective markup, that is, may be “procedural” in the sense
that SVG or XSLFO is. Alternatively, it may seek to claim all the advantages of
generic markup (scalability, strict validation, content re-use etc. etc.) without hav-
ing to be bound to describe anything apart from itself.

In my map (Figure 5), this could be distinguished by a vertical axis, “pro-
spective” corresponding to Renear’s imperative/performative mood, “retrospec-
tive” corresponding to Renear’s indicative; but it is interesting to see that when
we begin to place actual markup languages into this conceptual space, that there
are blank spots. In particular, there are two positions left empty in a possible grid
of six (we can conceive of Renear’s arrangement with a new domain to the left,
“exploratory/mimetic”, next to logical and renditional to the right). For one, it
seems unlikely that we would have an application of markup that is both pro-
spective (Renear’s imperative), but exploratory, having no use for validation or
the kind of binding to (even implicit) semantics that validation implies: if we are
creating a new format for a new application, what does validation lose us? It
could be that markup instances that are purely ad hoc �les for momentary pro-
cessing, would fall into this category.24

Equally unlikely would be a conjunction between retrospective and proce-
dural (or application-speci�c). This would correspond to Renear’s category of
“indicative renditional”, which he also remarks would seem to make little sense.

Beyond the “descriptive vs. procedural” distinction 159

Spring 2001 | Markup Languages: Theory & Practice

25 Nevertheless, applications like this are conceivable, and have even been executed in part. For example, if
an attribute syntax were to be adopted on top of a generic markup like TEI, especially if the attributes
worked to prescribe formatting (embedding, as it were, a style mapping into the generic instance), it might
achieve something like this.

26 In fact, as for example in the “XSL Formatting Objects Considered Harmful” argument [Lie 1999], when
these languages come in for criticism it is precisely because they have certain kinds of utility (though
perhaps not others).

Evidently, procedural and retrospective markup serve requirements that are in
con�ict. We can either describe the world as we �nd it (with retrospective
markup) or we can dictate in what way we need our data to be handled (with
procedural markup). The fact that traditionally, generic markup systems (or at
any rate, those that had retrospective designs) have sought to mediate this exact
con�ict, does not make it any easier to do so. The more we need our application
to serve retrospectively, the less we can expect to �nd thorough, detailed and
strict validation regimens of much help.25

That is, although we can distinguish a vertical axis that indicates a markup
application’s orientation in time (forward- or backward-looking), it is clear that
this axis is not completely orthogonal to the spectrum of loose-to-strict validation
that I began by tracing. It is likely that a prospective application will �nd strict
validation both useful, and not particularly burdensome. To the extent that an
application is retrospective (such as might be the case with a markup language
written to support conversion of a legacy data set, or a scholarly project in tex-
tual editing), however, it may prefer any testing to be loose. In graphing it out,
therefore, this axis appears on a diagonal.

Generic markup as a form of rhetoric

Prospective, procedural languages clearly have a place: it would be hard to
argue against the utility of standard XML vocabularies such as XSLFO and
SVG.26 At the other extreme, retrospective, exploratory applications of markup
would appear to be very fruitful as approaches to certain intellectual problems
(although until it became practical to develop markup applications without
DTDs, this kind of application of technology was severely hampered by a lack of
a standard toolset), particularly problems that have directly to do with questions
of how we represent non-digital phenomena by digital, processable means. But
what is most interesting here is the broad grey zone between these extremes, a
zone occupied by applications of markup that have a need for strict validation as
an instrument in work�ow and processing architectures, but that are not exclu-
sively bound to any particular type of processing or application, as would be
implied by a procedural language. This is the zone of “generic”, loosely called
“descriptive” languages such as TEI, W3C Rec ML, or for that matter, the lan-
guage used to mark up this paper.

Wendell Piez160

Markup Languages: Theory & Practice | Vol 3 No 2

Figure 5 | Markup languages mapped on two axes

The horizontal axis represents the level of validation appropriate or called for, and thus the spec-
i�city of machine (behavioral) semantics. Requirements for a tag set to be prospective (provide
for future use) or retrospective (describe a given artifact physically or “logically”) align along the
diagonal lower-left to upper-right.

Most discussions of “semantic” in the context of automated text (or “knowl-
edge”) processing end up having to distinguish between two meanings. There is
the realm of human semantics, largely if not principally representative, our
“meanings” when we express ourselves in language or by any other means. Then
there are machine semantics, the sorts of behavior, events, products or controlled
processes that can be expressed through a machine — and which are the normal
objective of work�ow-oriented systems. If you like, you can consider this a spec-
trum between word (on the “human” side) and act (the machine behavior). (Tim
Berners-Lee, for example, in his discussion of the “semantic web”, has openly
af�rmed that he is concerned only with the second kind.)

The world of “content” (text) that is encoded generically is a fascinating one,
in which these two competing notions of the semantic discover themselves head-
to-head. In this world, markup simultaneously links people and processes in dif-
ferent roles, and serves as a conduit or channel for “meanings” that have the
interesting property of skipping or passing through stages in a process (a “supply
chain”) that can go directly from creator and producer, to audience or consumer.
That is, markup provides a kind of framework or packaging by which words

Beyond the “descriptive vs. procedural” distinction 161

Spring 2001 | Markup Languages: Theory & Practice

27 Robin Cover argues [Cover 1998] that this makes it important to provide XML with a means of strong
semantic speci�cation, which in and of itself it does not have (since XML syntax, nor DTD-based content
modeling, are incapable of providing it). In Cover’s terms, this is XML’s lack of “semantic transparency”.
And for procedural applications of the syntax, this is certainly a critical issue. It can be addressed in
several different ways, for example by providing some kind of formal ontology; by merely presenting a
notation for some other data model; or by passing the problem into a syntax carried in attributes, such as
CSS, XPath or SVG path syntax. Yet for descriptive or generic applications, XML’s semantic opacity is
actually be a feature of the technology. It’s where things can get slippery between layers.

(written texts or representative codes) can be passed without consideration of
what they “say”. As a kind of interchangeable part, as long as the package or
framework is correct, the meaning or substance of the “text itself” (what we call
the “content”) can be more or less completely opaque to participants along the
chain. The framing or wrapping provides the text with suf�cient information
(about its nature, about its internal structures and relations) that it can be passed
and processed without constant rediscovery and reinvention. This wrapping or
packaging takes the form of markup; and of course, relative to the processes, the
markup is meaningful — yet its meaning is local and provisional. Accordingly,
these can be staged systems in which interpretation happens in an articulated
way. For example, authors decide some things, bibliographers some things, cata-
logers some things, layout designers others. In such a system, a degree of “seman-
tic opacity” is a feature (cf. [Cover 1998]), allowing us to provide appropriate
processing based on some kind of “intention” as a tag set presents that, but
always leaving it up to us to decide �nally what that means. The masking or
withholding of any details or speci�cations for processing, that is, behind “ele-
ment type names” or “generic identi�ers”, is part of what makes such a system
work: by not insisting on a binding to any one thing, the mechanism of element
typing is free to support an open-ended range of things. Note that exactly insofar
as machine semantics is devalued (or rather, postponed or layered) in such a sys-
tem, the expression of human semantics becomes very important: generic markup
languages become worse than useless if their tag names are cryptic or if they are
not well documented. But when a markup language is designed well, it can be
used to frame and drive a process in which different participants can provide
their added value, each without having to get involved in exchanges of no direct
concern to him- or herself.

In these respects, a generic language is able to be, or to pretend to be,
exactly, descriptive or representational — meaning that, pragmatically, it has
some kind of implied human semantics, without being bound to any, or any par-
ticular, processing (machine) semantics. That is, we take the tags to “mean”
something — but what they actually mean, in the event a �le is ever processed,
may be different from (albeit in some way implied by) the meanings of the tags.
In other words, there is a slippage between what a descriptive tag set purports to
mean, and what it actually “means” (does) in the event.27 This slippage is the

Wendell Piez162

Markup Languages: Theory & Practice | Vol 3 No 2

28 Lately, Michael Sperberg-McQueen, Claus Huitfeld and Allen Renear have sought to formalize markup
languages’ (including generic markup languages’) handling of meaning by saying markup “licenses certain
inferences” about a text. (See [Sperberg-McQueen 2000].) In the notion of inference — and the evasion
of the issue of how an inference can be constrained or de�ned (since isn’t an inference precisely that kind
of communication that can’t be constrained or de�ned?) — they effectively elide this transition between
formal information theory, and rhetoric (which is enamored of formalisms, but resists being
comprehended by them). To “license an inference” is, in effect, to say something without saying it. Is this
logic, or rhetoric?

29 To examine this in the context of Renear’s categories: one difference between imperative and indicative,
or between a “performative” and an indicative (the axis Renear describes as “mood: whether markup
describes something, or requests processing” [Renear 2000]), is that an indicative refers back to the
past (or disinterestedly to the present or future). It is the projection or implication of some reality apart
from the markup (the separation of format from content!), whether this is a feature of some kind as
documented, a perception, or an imaginative projection, which competes with processing objectives, that
opens up the important area of slippage.

source of the power of descriptive languages, their famous “indirection”: mean-
ing nothing directly, they can be taken to mean a great range of things if we only
bind their evident and ostensible meanings (that in practice do nothing but struc-
ture and disambiguate between types) to behaviors. To tag a data element as a
title, say, may mean nothing more than “whatever you do with titles, do it
with this thing”.

So generic markup involves us in a strange paradox. It foregoes the capabil-
ity of controlling behavioral “machine” semantics directly, but wins, in return, a
greater pliability and adaptability in its applications for human expression. This
kind of middle-ground markup would be systematic enough to be receptive to
automation, but would not necessarily be automated “out of the box”. Another
way of describing this kind of markup application, as opposed to more strongly
typed and validated kinds, is that this is the kind of system in which a stylesheet
writer has something signi�cant and important to do. Stylesheets are a natural
way to get from an abstract model, into an application. But they might require,
as stylesheet writers know, some addition of information, interpretation and
restructuring, as well as mere mapping. Stylesheets are also where a great deal of
creative work can come into play.

If this variety of markup language is not really a set of instructions, but a
complex representation (on which a later process may be expected to act), the
proper discipline for regarding it would seem therefore to be, not formal lan-
guages (that have the virtue of being readily bound to processing), but something
closer to linguistics and rhetoric.28 This is the realm where we experience slip-
pages — whether inadvertent, or “intentional” — between actual and potential
meanings.29

In effect, markup languages are far more than languages for automated pro-
cessing: they are a complex type of rhetoric working in several directions at once,
often in hidden ways. Inasmuch as markup systems then may begin to resemble
other textual systems (such as literary canons or conventional genres), it is rea-
sonable to turn to rhetorical or literary critical theory for explanations, or at least

Beyond the “descriptive vs. procedural” distinction 163

Spring 2001 | Markup Languages: Theory & Practice

30 In particular, on the work of the poet and literary scholar John Hollander [Hollander 1981] and his
colleague, the critic Harold Bloom [Bloom 1982].

31 Hollander (and with him, Bloom) claims that this type of thinking is to engage not just in the usual kind of
“synchronic”, but a “diachronic” rhetoric. That is, ordinary treatments of rhetoric pay attention to the use
of �gurative language as if all the signi�ers were related outside of time. (This would seem to be a
Platonistic view of text, with all meanings always available sub specie aeternitatis.) But it is possible, not
only to consider how language or signi�cation interacts as a kind of “random access” system, but also to
think of how meanings work over time and across it, how they shift and change in relation directly to one
another, how they recapitulate or anticipate. This kind of thinking is extremely helpful as soon as we start
looking at layered systems and complex, dynamic information interchange — but it involves us, in effect,
in representing the �ow of information, the stages of its passage.

32 The extremely useful word “trope” may call for some explanation. From the Greek for “turn”, it is a
traditional word to designate a �gure of speech or signi�cation (whether spoken, written, or by some other
means), or any occasion when something is expressed by saying something somewhat different.
Metaphor is a trope, though its cousin simile (a comparison using “like” or “as”), even when poetical, is
only a trope in a loose sense. Other tropes include metonymy, synecdoche, irony, etc. etc.

higher-level characterizations of them. I am not going to begin to plumb the
depths of this subject here. Given both the complexities of real-world work�ows,
and the fact that many of the agents are human beings only as mediated through
their machine proxies, it is dif�cult to say who is saying what to whom through
(and in) a markup language or markup language application. Then too, the ways
in which messages and meanings trace through an electronic text system, is going
to be highly, sensitively dependent on the unique particulars of media, technology
and culture at work in a particular case. One thing that does need to be observed
here, however, is that in markup, we have not just a linguistic universe (or set of
interlocking linguistic universes) but also a kind of “rhetoric about rhetoric”.
That is, markup languages don’t simply describe “the world” — they describe
other texts (that describe the world).

As it happens, critical theory has had occasion to consider such complex
types of �guration, representation or meaning. I am going to draw on the work
of scholars who have studied intertextual referentiality30 (where this type of phe-
nomenon is especially pronounced), to distinguish between the tropes metalepsis
and prolepsis. These are distinguished from the usual run of rhetorical �gures
such as metaphor, metonymy and so forth, because unlike others (which are
occasions of �gurative representation), these are tropes about tropes. It is not
“something in the world” that is represented in a metalepsis (or its less common
complement, prolepsis), but rather some other act of �guration.31

Proleptic markup
Of prolepsis and metalepsis, the �rst is possibly simpler to grasp quickly:

Prolepsis is a rhetorical trope or gesture32 in which an expression or �gure of
speech takes its meaning from something that is to appear later. Dramatic irony
(where a character in a play, for example, says something that carries an extra
meaning to an audience that knows or guesses what is to happen in the drama),

Wendell Piez164

Markup Languages: Theory & Practice | Vol 3 No 2

33 So, for example, CSS has grown up as an API (in effect, albeit “declarative”) around HTML, therefore
pulling HTML/CSS further into the procedural than plain “generic” HTML on its own. As an API to a display
engine, of course, CSS is useful to more than HTML.

34 Again, see [Quin 1996].

or literary or dramatic foreshadowing, is prolepsis; but so is any “casting for-
ward” or anticipation, such as an argument one might make in a conference
paper in anticipation of counter-arguments. Consequently, the full meaning of a
prolepsis is impossible to know without taking account of its relation to the
future. Whether what is forecast does, in fact, come to pass in the way forecast,
opens prolepsis up to capabilities for irony. On the other hand, sometimes saying
something, makes it so: so prolepsis often has the capacity for a kind of poetic
“�at” or self-ful�lling prophecy.

Any prospective tagging might be called “proleptic” because the meaning of
the tagging is intimately connected with our expectations for processing it. Even
when such markup is generic, we call something a head or a section because we
intend to treat it as a head or a section in processing. This is Renear’s “performa-
tive” markup: the section becomes a section through the act of naming it so.

But it might also be that the term proleptic would be useful to distinguish
exactly that type of prospective (performative) markup that works generically,
such as DocBook, the W3C “XML Rec” markup, or even certain kinds of
XHTML (probably “XHTML Strict”), as opposed to prospective markup that is
merely, in effect, an application binding, such as SVG or certain other kinds of
XHTML (such as a DHTML application, heavily laden with script and tuned to
a particular browser). Admittedly, this too may be a spectrum rather than a sim-
ple either/or classi�cation; also, it should be noticed how a markup language may
actually “grow into” an application binding — or conversely, how an application
binding or API may grow around a markup language.33 Nevertheless, there will
be occasions when, although we have expectations for processing our data, they
may not be speci�c or limited expectations. In other words, we want a method (a
generic language) that affords us that slippage between speci�cation and process-
ing. The word “proleptic” seems to allow for this: as a trope, the meaning of a
prolepsis has to be seen as conditioned by the possibility, at least, that things
don’t quite turn out as expected. Especially when marking up new texts (or com-
posing texts in a new language), this is a very powerful way to approach the
design and practice of markup: an artful combination of speci�cation and slip-
page is what enables most of the promises of generic markup to be realized.34

When we design, we may want to know in detail (or at least in principle) the
application requirements of a markup language; we may want to be prospective
if not actually procedural. Nonetheless, we always want to keep our eyes also on
the bigger picture, since a careful restraint devoted to modeling our information
“logically” (that is, in some sense, descriptively, if only to be descriptive of an

Beyond the “descriptive vs. procedural” distinction 165

Spring 2001 | Markup Languages: Theory & Practice

35 Practical reasons: converting large amounts of data from a legacy format. A well-designed model that
looks to how that data is formatted, can preserve information through conversion to an open format like
XML, and ease the conversion process. Intellectual reasons: develop a theory about a (body of) text;
formalize that theory; demonstrate its utility.

36 In most applications. TEI can also be used in a proleptic way, for example when it is used to drive a web
site of original documentary materials (a task for which a TEI subset is actually fairly well suited). Notice
that it is not a markup language (a tag set) that is per se proleptic or metaleptic, but an application of it.
Some tag sets can be used in all kinds of ways: HTML certainly has been.

abstract model) rather than in the language actually of an application, pays off in
the long run in data independence, reuse, longevity, and so on.

In this kind of endeavor, validation routines are going to be very useful. We
will build our work�ows around them. More interestingly, possibly, our means of
specifying validation, such as DTDs, will be useful as speci�cations for tools,
many of which can be automatically �tted to the task. This is an application of a
gauge (the DTD), which is used to check conformity to an external measure, as a
jig — a device or tool �tting, that allows us to make the component to measure
the �rst time. In a suf�ciently evolved production system, we may never even
have documents that are “invalid” in the XML sense, and we may have needs
and uses for all kinds of validation besides simple structural element type check-
ing. But we may do all of this without any particular or speci�c expectations for
processing.

Metaleptic markup
So proleptic markup is that type of generic markup that looks forward.

What of generic markup that looks at what is past? That is, that tries seriously to
register, in some disinterested and objective way, features and organizations of
information already out there? In some ways it would seem unnecessary to have
to submit a descriptive markup convention to strict validation, with all that
implies (we remember Birnbaum’s argument [Birnbaum 1998]). Nevertheless,
whatever processing we expect to do over data sets, on however large a scale,
will demand some kind of validation at some point, and there are many reasons,
both intellectual and practical,35 to try to design a generic language that also tries
to capture some “truth” (or at least theory) about the world. Having formalized
our theories in abstract models, we can then test them by running the very same
validation routines that we apply to encodings that have been speci�cally
designed for processing, not for representation. In the end, validation is not only
a testing instrument in a work�ow: it is an investigatory instrument in its own
right. DTDs are representations of texts. So we look backward, in an interest-
ingly formalistic way. But we also get the bene�ts of looking forward.

This type of markup tries to be retrospective (and in this presumes to
describe the data set), but nevertheless relies on, and bene�ts from, strong or
“strict” validation regimens. Such tag sets would include TEI,36 or any tag set
developed for data conversion or retrospective document conversion which seeks

Wendell Piez166

Markup Languages: Theory & Practice | Vol 3 No 2

37 John Hollander, considering metalepsis as a “diachronic �gure”, describes it as related to allusion but
entailing a deliberate relation between before and after. “We deal with diachronic trope all the time, and
yet we have no name for it as a class. An echo of the kind we have been considering may occur in a �gure
in a poem, and it may echo the language of a �gure in a previous one. But the echoing itself makes a
�gure, and the interpretive or revisionary power which raises the echo even louder than the original voice
is that of a trope of diachrony” [Hollander 1981]. As a variety of allusion with “interpretive and revisionary
power”, metalepsis is not any ordinary act of signi�cation or representation: it is a representation with
reference to another (previous) representation. Once he has alerted us to this possibility, Hollander is
able to show that gestures of transumption (the Latin “transumption”, with its morphological variant the
verb “transume”, has long been a variant of the technical Greek “metalepsis”) are in fact not uncommon
in literary language. “Save for dramatic irony, with its audience’s — or reader’s — proleptic sense of an
outcome of which the dramatic speaker is unaware, and which engenders an interpretation more powerful
than the raw intended meaning of the speaker himself, only transumption seems to involve a temporal
sequence” [Hollander 1981]. His fascinating book The Figure of Echo contains a thorough examination of
the dimensions and history of this category in critical theory. Nor is this conception, concludes Hollander,
of application limited to poetic language. “Not only particularly preexistent metaphors, but formal
structures — and M.H. Abrams and, more recently, Paul Fry, have shown us authoritatively the intricate
turnings of the transumption of a previously public form in the history of the ode — are recreated
metaleptically. So are genres” [Hollander 1981]. And so, I submit, are markup languages.

38 The Christian New Testament is metaleptic with respect to the Old Testament. Virgil is metaleptic with
respect to Homer, Dante with respect to Virgil. Strong poetry is almost inevitably metaleptic, since poets,
it seems, cannot help but echo and try again their predecessors, but in such a way that they commandeer
the older works and set them to later purposes. Blake and Shelley succeeded at this so thoroughly with
Milton, that we cannot even read Milton any more (if we do at all) without meeting up, in some way, with
Shelley’s Romantic heresy. This also happens in musical traditions: Brahms is metaleptic (or attempts to
be) with respect to Beethoven, and so forth.

39 I suppose any extension of a standard or off-the-shelf markup language might be metaleptic in a simple

at once to be both descriptive and generic. Markup systems like this are evidently
descriptive after a fashion; but it is also clear that their prospective applications,
be those presentational, analytical or what have you, are a big part of their con-
ception.

In contrast to prolepsis, metalepsis is the rhetorical trope in which the mean-
ing of an expression is in direct reference to what has already happened in the
past.37 Of course, this is in some sense true of all rhetoric, since all rhetoric is
situated, in some way, in a moment with a history (and inasmuch as this is the
case, all rhetoric is metalepsis, successful or failed); but in a narrower sense,
metalepsis is what occurs when reference is made to another�gure that has
already appeared (some event of meaning or �guration that has already taken
place), but in such a way that the meaning of the earlier �gure is itself changed
by the appearance of the metalepsis.38

What then would be a metaleptic markup language? Keep in mind, to begin
with, that document markup as rhetoric is necessarily complex; there are various
levels of expression here. A tag set describes a data set, or it describes a theory
about the data set; when it looks back, what does it see? Might it not sometimes
have reference to one or more earlier systems of description (earlier theories?),
including implicit traditions? A consideration of markup systems actually in use
(I’ve mentioned academic projects including TEI, as well as transition or conver-
sion formats being used in industry), suggests that such a reference is not, in fact,
uncommon.39 In general, metaleptic tagging will act retrospectively, and may even

Beyond the “descriptive vs. procedural” distinction 167

Spring 2001 | Markup Languages: Theory & Practice

way. But more common, and more complex, are cases where the references are merely implicit, if
sometimes obvious.

40 In fact, the process of formal document analysis as it is practiced in the markup industry, can involve a
complex interplay between an actual descriptive exercise, as a way of driving work and exploring the
problem domain, while ultimately keeping focus on requirements for future processing.

pretend, and attempt, to be thoroughly descriptive and retrospective in its rela-
tion to already captured information (�gures already spoken); but it relies on
strict validation. This betrays its true nature: its design and application is really
done for purposes of future uses of the data (new meanings), not merely to
“describe” in the more limited senses of that term. It is retrospective tagging for
prospective purposes: thus, it works by saying something about the past (or
about the presumed past), but in order to create new meaning out of it.

Typically, it does this by positing a model of the text and then asserting,
implicitly or explicitly, that this model is suf�cient for all practical (if not conceiv-
able) descriptions or applications of the text. And in well-designed, mature sys-
tems (by which I mean ones which have clari�ed the way they actually work and
are not confusing either their rationales or their design with those of other
markup applications), metaleptic languages do in fact function very nicely as gen-
erally-accurate descriptions — though it should be added, that when they succeed
in this way, it is typically because they determine not to try and describe every-
thing.

Just like any other future-bound processing, this kind of markup will be able
to take advantage of strict, go/no-go validation. Because this kind of tagging
often originates as a description of a given artifact (a known text), it is easy to
identify it with true descriptive markup. But as I’ve said, that is a very rare thing
(unheard of in commercial or industrial applications): the goal of describing a
pre-existing object must generally yield, at some point, to the more practical need
to constrain and process the information set. Hence most markup languages that
go by the name “descriptive” are only so up to a point — they are in fact meta-
leptic.40 A metaleptic markup language (or rather its designers and advocates,
perhaps its users) may be entirely innocent of any perceptions of stress between
extant documents, and abstract models — fundamentally, the stress over which
many struggles over validation will take place. Absent any consciousness of such
a stress, a metaleptic design may take, or propose, its model or theory of the text
as a kind of reality, thus claiming the title “descriptive”. But we can know it for
what it is when we see it being validated strictly, and when we also hear, in addi-
tion to its claim that it works by description, that it expects all the bene�ts down-
stream of validation, in the data set’s readiness for further processing (be that
publication of electronic or print editions, providing database access, or what
have you).

Wendell Piez168

Markup Languages: Theory & Practice | Vol 3 No 2

41 In a metaleptic markup language, there is a missing term standing between the language itself, and the
text, the presumed “content” that completes (and is completed by) the markup: that term is the theory of
the text, the model, that the language formalizes. (Here I am concurring with Paul Caton, [Caton 2000].) It
is the movement from one term to the next (here, from text to theory, theory to model, model to
application) that makes for the rhetorical complexity of such a language, sometimes most complex when it
aspires to be most “transparent” — and that may help make applications of these languages suitable for
particularly interesting processing, as being particularly “slippery”.

42 This is of course the famous separation of format from content. Two tiers would be the repository and
presentation layers (think of a TEI text and its HTML rendition); this also maps over to the model/view/
controller paradigm, with “descriptive” or “generic”instance as model, rendition version (say, HTML) as
view, and stylesheet or script as controller.

So far so good; the dark side of metalepsis is, possibly, when it denies its own
complex and layered nature. An act of transumption (a synonym for “metalep-
sis”) changes, trans�gures, that which it transumes (in this case, “describes”).41

To pretend otherwise, it would seem — to pretend, for example, that our repre-
sentations are in all respects (or even all important respects) identical to what
they represent — would only have the effect of setting ourselves up for disap-
pointment. In the worst case, we may completely fail to determine our actual
needs and �t our design to them: stuck on the horns of this dilemma, we may end
up with neither an adequate representation of our source text (however we de�ne
that), nor data that is well suited for automated processing.

More commonly, rather than being purely descriptive/exploratory, or purely
proleptic, applications adopt a metaleptic design strategy because they need to
meet requirements on two sides, past and future. In time, if they are lucky, they
grow into a consciousness of their ambiguous status; but the actual rationales,
expectations, and design of these projects are often complex and intermixed.
Sometimes project participants themselves have not exactly clari�ed what their
main interest is; often they are working with several con�icting rationales or
requirements.

Yet in general, the emergence of this type of markup is of great importance
because it has led us more quickly and readily to understand the ef�ciencies,
power and scalability of layered markup systems: just like proleptic markup
(which is generic without being retrospective), metaleptic tagging is very much at
home in such a system of at least two tiers, possibly because it itself has two
faces, looking in and looking out.42 And when they are well designed (which not
coincidentally, often means intentionally designed) and appropriately deployed,
such a markup language can be fascinating in its own way, quite differently from
either of the other two forms of markup that are prevalent (leaving aside explora-
tory markup as more rare than it should be, we also see generic proleptic
markup, and procedural applications). It has its own kind of art. It does not try
merely to transcribe, as purely descriptive, exploratory tagging would (though as
scholars know, “merely transcribe” is an impossibility and an oxymoron), nor
merely to function in future systems, like prospective markup (spectacular though

Beyond the “descriptive vs. procedural” distinction 169

Spring 2001 | Markup Languages: Theory & Practice

43 This observation has often been made informally, in a variety of ways. “Selection is easier than synthesis,
but the world is not �nite”, says Brian Reid [Reid 1998].

44 This tension can be seen to play out exactly in the role validation is expected to play in TEI projects. On
the one hand, the tag set is provided with an apparatus to support extensibility. This is the promise of
descriptive markup: that no text should have to be forced to �t. On the other, validation is considered
indispensable, not only for usual quality-assurance reasons, but also because in it there is an assurance
(for example) that the rigors of the teiHeader are observed, or that off-the-shelf (or nearly off-the-shelf)
stylesheets be able to be used — or that interchangeability be achieved (a prospective requirement, per-
turbed by local extensions). It is, after all, the Text Encoding Initiative for Information Interchange.

that might be). It aspires to both, by seeking to balance between them. An effec-
tive markup language will work by establishing a self-contained, internally con-
sistent and clear set of categories perfectly suf�cient for handling the data set to
which it will be applied, within the range of applications for which it is due. But
this ideal is impossible for a truly descriptive language to achieve, since the world
is not a closed, �nite set of phenomena that is liable to such treatment.43 Metalep-
tic markup gives us the next best thing: it invents its own imagined world, pro-
posing earnestly or ironically that this serves both sides, both accounting for
external reality as it is, and creating it as it needs to be.

TEI, incidentally, has occasionally been represented as a true retrospective
tag set, yet is torn about the issue. It aspires to provide certain functionalities
along with transcription, such as eased production costs for print or online edi-
tions, or eased repurposing across different applications, that can only be guaran-
teed through strict validation. Up until recently (when XML has made processing
without a DTD more practical), validation has been a particularly all-or-nothing
proposition. New (and newly accessible) tools and approaches supporting
“loose” validation may now seem more of an option than they have hitherto
(especially to strapped academic programs). Nonetheless, TEI cannot help but
continue to be powerfully metaleptic: pretending to be simple, naive, retrospec-
tive (and accordingly, extensible!), and simultaneously stressing validation as a
means of smoothing transitions of its texts to new media and new applications —
a prospective gesture — it ends up “falling into” metalepsis despite itself.44

Finally, it may be worth observing how architectures supporting metaleptic
languages or applications will differ from those for proleptic languages. For one
thing, we will be able to tell the difference when we look at a project’s regard for,
and use for, validation mechanisms. For a metaleptic system, validation will need
to be strict to the extent that future processing is anticipated. On the other hand,
since there is at least a presumed interest in the prior or “original” nature of the
textual content’s own structures, features or organizations — however these are
conceived — it may be at times that the best solution to a mis�t between docu-
ment and formal model is to change and adapt the model (and accordingly, the
system) rather than forcing the document. As in pure exploratory applications,
markup is designed �rst, formalized after, whereas in a proleptic system, the
model or schema will come prior to the markup. This difference in emphasis may

Wendell Piez170

Markup Languages: Theory & Practice | Vol 3 No 2

make for different toolsets, to an extent. Also, we can expect of metaleptic sys-
tems, in particular, that the natural stresses between requirements for description
(sometimes in the guise of backwards-compatibility) and for interchange, will be
at their greatest: balance will only be achievable if we keep a realistic view of
what we intend to achieve and how we intend to do it. But when metaleptic sys-
tems are well designed, the rewards, both in our mastery of complex bodies of
information, and in our understanding of them, will be great as well.

Conclusions

� “Descriptive” may not be the best word. It means too many things. Even the
procedural languages are descriptive: they describe a binding, API, or object
model. The differences are in the closeness of the binding and the extent to
which an abstract syntax allows us to validate without binding, hence letting
us design a language at a higher level of abstraction (and get capabilities of
reuse and re�tting thereby). Generic is a somewhat more useful term: these are
languages that can be strictly validated, but that are only loosely bound to
processing. At the far end, markup that isn’t validated at all, if it is retrospec-
tive, may be said to be descriptive, insofar as it describes some external object
(and is therefore directly representational). But historically, no standards have
existed to support markup systems of this kind. XML may help stimulate
more of this work.

� Watch out for clashing requirements. Prospective (“performative”) markup
can be generic, and generic markup may seek to be either prospective (prolep-
tic) or retrospective (metaleptic), or both together. But the more we try to
“describe”, the more dif�cult we will �nd it to validate (in the broadest senses
of that term). We should be careful to distinguish the requirements presumably
served by our design strategies. Academic projects with a commitment and
interest in description of something external (say, a literary or manuscript text)
may have a particularly dif�cult time with this — for example, when an
exploratory design clashes with a requirement for interchange. The “descrip-
tive vs. procedural” distinction can, if we are not careful, muddy the waters
here even further.

� New approaches to design: bottom-up. Loose validation with Draconian error-
handling at the syntactic level (e.g. XML well-formedness) — even if it
involves no “validation” at all in the formal XML sense — should open up
new possibilities for design strategies and methods, as well as for new applica-
tions of markup, including exploratory modes of markup such as I have
described. Up to this point the design process for a document model has usu-
ally been driven by a top-down analysis, and centered on DTDs. As long as
DTDs provide a useful means for testing for the kinds of interchange and

Beyond the “descriptive vs. procedural” distinction 171

Spring 2001 | Markup Languages: Theory & Practice

downstream processing that have been prominent requirements, this will con-
tinue to be appropriate. But if and as we design systems and markup lan-
guages with other aims — such as, for example, an exploratory application
rather than a “performative” or direct application of markup to processing —
other techniques and approaches may prove useful. What if designs were cen-
tered not on DTD validation, but on stylesheets and query sets that provided
meta-information (including validation checks) along with or in place of their
more usual kinds of transformations? What kind of markup applications
would be well served by such an approach?

� New complications include maintenance and oversight. Already approaches to
XML validation are proliferating. Which of the various approaches now being
tried, both strict and loose, come to be prevalent (and which approaches in
which environments and domains), is an issue I can’t address. But nothing is
either/or here: just because we use DTDs or XML Schema to validate one set
of features to requirements, does not mean we can’t use other means (style-
sheets or query sets, for example) for others.

If and as we do this, however, we should be careful to keep clear what we
are doing where, and why. It could easily become a problem if the same set of
constraints on a document set, or type, comes to be validated through more
than one tool: this would introduce new problems of parallel maintenance. (It
would be like having two rulers to measure things, but not being sure they
measured the same “inch”.) Yet different kinds of validation, and of tools to
do it with, might well be very usefully done at different stages of a document
lifecycle. (Such routines have been commonplace for years in any case.) When
systems become complex and validation routines overlap, it might be helpful
to have a “validation validation” regimen to appeal to. This is what, for
example, testing suites for tools provide — just as standardization has been
managed, again, even since the very �rst years of interchangeable parts.

Received 23 July 2001
Revised 5 October 2001
Accepted 8 October 2001

References

[Birnbaum 1997] Birnbaum, David J. 1997. “In
Defense of Invalid SGML”. At http://
clover.slavic.pitt.edu/ ;djb/
achallc97.html

[Birnbaum 1998] Birnbaum, David J. 1998. “The
Problem of Anomalous Data”. Markup
Technologies ’98.

[Bloom 1982] Bloom, Harold. 1982. The
Breaking of the Vessels. The Wellek Library

lectures at the University of California, Davis.
Frank Lentricchia, Series Ed. Chicago:
University of Chicago Press.

[Caton 2000] Caton, Paul. 2000. “Markup’s
Current Imbalance”. Extreme Markup
Languages 2000.

[Cournane 1997] Cournane, Mavis. December
23, 1997. The Application of SGML/TEI to the
Processing of Complex Multilingual Historical

Wendell Piez172

Markup Languages: Theory & Practice | Vol 3 No 2

Texts. Doctoral Dissertation, University
College, Cork. Cork, Ireland.

[Cover 1998] Cover, Robin. 1998. “XML and
Semantic Transparency”. At http://
www.xml.coverpages.org/
xmlAndSemantics.html .

[Cover 2001] Cover, Robin. 2001. “Conceptual
Modeling and Markup Languages”. At http://
xml.coverpages.org/
conceptualModeling.html .

[Sperberg-McQueen 1994] Sperberg-McQueen,
C.M., and Lou Burnard, eds. 1994. “A Gentle
Introduction to SGML”. In Guidelines for
Electronic Text Encoding and Interchange.
Repr. 1997. Chicago, Oxford: Text Encoding
Initiative. pp. 13-36. Available online at
http://www.uic.edu/orgs/tei/sgml/
teip3sg/

[Hollander 1981] Hollander, John. 1981. The
Figure of Echo. Berkeley, CA: University of
California Press.

[Hounshell 1984] Hounshell, David. 1984,
1985. From the American System to Mass
Production, 1800-1932. Baltimore: The Johns
Hopkins University Press.

[Lancashire 1995] Lanchashire, Ian. 1995.
“Early Books, RET Encoding Guidelines, and
the Trouble with SGML”. At http://
www.ucalgary.ca/ ;scriptor/papers/
lanc.html

[Lie 1999] Lie, Haºkon W. 1999. “Formatting
Objects considered harmful”. At http://
www.myopera.com/people/howcome/1999/
foch.html.

[McCarty 1999] McCarty, Willard. August 29,
1999. An “Analytical Onomasticon to the
Metamorphoses of Ovid”. On-line sampler. At
http://ilex.cc.kcl.ac.uk/wlm/
onomasticon-sampler/ .

[Quin 1996] Quin, Liam. November 1996.
“Suggestive Markup: Explicit Relationships in
Descriptive and Prescriptive DTDs”. SGML’96.
Graphic Communications Association.

[Reid 1998] Reid, Brian. 1998. Keynote address
to Markup Technologies ’98.

[Renear 2000] Renear, Allen. 2000. The
Descriptive/Procedural Distinction is Flawed.
Extreme Markup Languages 2000. Reprinted
inMarkup Languages: Theory and Practice, 2,
no. 4 (Fall, 2000).

[Rockwell 2001] Rockwell, Geoffrey. February
20, 2001. Private e-mail to the author.

[Goldfarb 1990] Goldfarb, Charles F. 1990. The
SGML Handbook. Oxford: Clarendon Press.
Annex A. Adapted from Charles F. Goldfarb, “A
Generalized Approach to Document Markup”,
in SIGPLAN Notices, June 1981.

[Sperberg-McQueen 2000] Sperberg-McQueen,
C.M., Claus Huitfeldt, and Allen Renear.
“Meaning and Interpretation of Markup”.
Extreme Markup Languages 2000.

[XML 2000] Bray, Tim, Jean Paoli, C.M.
Sperberg-McQueen, and Eve Maler, eds. 6
October 2000. “Extensible Markup Language
(XML) 1.0 (Second Edition)”. W3C
Recommendation . At http://www.w3.org/
TR/2000/REC-xml-20001006

